TANGRAM -- Origem, importância e sua construção
Tangram é um quebra-cabeça chinês formado por 7 peças (5 triângulos, 1 quadrado e 1 paralelogramo) Com essas peças podemos formar várias figuras, utilizando todas elas sem sobrepô-las. Segundo a Enciclopédia do Tangram é possível montar mais de 1700 figuras com as 7 peças. Esse quebra-cabeça, também conhecido como jogo das sete peças, é utilizado pelos professores de matemática como instrumento facilitador da compreensão das formas geométricas. Além de facilitar o estudo da geometria, ele desenvolve a criatividade e o raciocínio lógico, que também são fundamentais para o estudo da matemática. Não se sabe ao certo como surgiu o Tangram, apesar de haver várias lendas sobre sua origem. Uma diz que uma pedra preciosa se desfez em sete pedaços, e com elas era possível formar várias formas, tais como animais , plantas e pessoas. Outra diz que um imperador deixou um espelho quadrado cair, e este se desfez em 7 pedaços que poderiam ser usados para formar várias figuras. Segundo alguns, o nome Tangram vem da palavra inglesa "trangam", de significado "puzzle" ou "buginganga". Outros dizem que a palavra vem da dinastia chinesa Tang, ou até do barco cantonês "Tanka", onde mulheres entretiam os marinheiros americanos. Na Ásia o jogo é chamado de "Sete placas da Sabedoria".
Também é um jogo muito utilizado pelos professores de matemática para apresentar aos alunos da educação infantil e do ensino fundamental (até o 6º ano) formas geométricas, trabalhar a lógica e a criatividade, retas, seguimentos de retas, pontos e vértices.
Construção
Quando o professor propuser aos seus alunos o trabalho com Tangram é importante que deixe que eles o construam. O Tangram pode ser construído com EVA ou com papel cartaz, então é preciso que o professor peça que os alunos levem para a próxima aula:
Papel cartaz ou EVA.
Régua
Lápis preto
Borracha
Agora, veja passo a passo como funciona a construção do Tangram.
1º passo: Recorte o EVA ou o papel cartaz em forma de um quadrado:
2º Passo: Trace um segmento de reta que vai do vértice b ao vértice h, dividindo o quadrado em dois triângulos iguais.
3º Passo: Para encontrar o ponto médio do segmento de reta BH, pegue o vértice A e dobre até o segmento BH o ponto de encontro do vértice A e do segmento BH será o ponto médio de BH.
4º passo: Dobre o vértice J até o ponto D assim formando dois pontos, um no segmento BJ e outro no segmento HJ.
Agora trace um segmento de reta do ponto E ao ponto I.
5º Passo: Trace uma reta perpendicular do ponto D ao segmento EI
Assim, dizemos que um Tangram possui dois triângulos grandes, três triângulos menores, um paralelogramo e um quadrado. Veja essas figuras destacadas:
http://blogdajumay.blogspot.com.br/2011/03/tangram.html
Nenhum comentário:
Postar um comentário